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Networks are
everywhere!
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Why networks?
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Why networks?
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https://plotly.com/~alan.roncoroni/2.embed
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Saqr, M., Fors, U., Tedre, M., & Nouri, J. (2018). How social network analysis can be used to monitor online collaborative learning
and guide an informed intervention. PLOS ONE, 13(3), e0194777. https://doi.org/10.1371/journal.pone.0194777



https://doi.org/10.1371/journal.pone.0194777

(Singh, 2019)
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Why networks?
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Networks in Education
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How network analysis can be
helpful for understanding
learning?



Not new: LAK'11 and pre-LAK
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Applied Network Analysis: Core Messages
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Networks are much more than social networks

Not all centralities measures are made equal

Network models matter

Network evaluation is subjective and multi-dimensional



®  O— (O—O Networks are more than social networks

Graphs are often used as a method
to reduce high-dimensional data.

Here: networks = graphs = diverse entities and relations



o O O—O Networks are more than social networks
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Figure 2.1. Topic-topic and person-topic relations extracted from transcripts of teacher-student
workshops.

Hoppe, H. U. (2017). Computational methods for the analysis of learning and knowledge building communities. The Handbook of learning
analytics, 23-33.



(O Networks are more than social networks
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Figure 2. Bi-partite sub-network of learners and vocabulary terms with high modularity
(left: habitual video watchers) and low modularity (self-regulated learners).

Hecking, T., Dimitrova, V., Mitrovic, A., & Hoppe, U. (2017, December). Using network-text analysis to characterise learner engagement in
active video watching. In ICCE 2017 Main Conference Proceedings (pp. 326-335). Asia-Pacific Society for Computers in Education.
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Fig. 3 Examples of transitions graphs of two students enrolled in course 2 (a) and course 4 (b) of the study,
respectively

Mirriahi, N., Liagat, D., Dawson, S., & Gasevi¢, D. (2016). Uncovering student learning profiles with a video annotation tool:
reflective learning with and without instructional norms. Educational technology research and development, 64(6),
1083-1106.
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engineering design simulation.

Shaffer, D., & Ruis, A. (2017). Epistemic network analysis: A worked example of theory-based learning analytics.
Handbook of learning analytics.



®  O— (O—O Networks are more than social networks

Also communication and interaction between people

Ties:

e semantic overlap
artefact use
timing
course enrolment
Composite of the above

ICLS & CSCL works:
e Goggins et al. 2013
e Suthers 2015
e Dascalu, Metal., 2018



®  O— (O—O Networks are more than social networks

Graphs are also often used as a methodology
to analyze socially shared learning
and communication.

Here: networks = graphs = theoretically relevant social learning aspect



O—— @ ——(O——O Notall centrality measures are equal

Network centralities measure network positioning

Positioning = benefits/constraints from where you are in the network

Similar positioning = similar benefits = possibility for assessment



O—@ O—O Not all centrality measures are equal
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Joksimovi¢, S., Manataki, A., Gadevic, D., Dawson, S., Kovanovi¢, V., & de Kereki, I. F. (2016). Translating network position into

performance: Importance of centrality in different network configurations. Proceedings of the Sixth International Conference on Learning
Analytics & Knowledge - LAK ’16, 314—323. https://doi.org/10.1145/2883851.2883928
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O—@ O—O Not all centrality measures are equal

Tie definitions by Wise, Cui & Jin (2017)

T

Direct reply Copresence / Shared thread



(O Not all centrality measures are equal
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Figure 2: Six Social Tie Definitions

Wise, A. F., Cui, Y., & Jin, W. Q. (2017). Honing in on social learning networks in MOOC forums: Examining critical network

definition decisions. LAK



O—— @ ——(O——O Notall centrality measures are equal

Same centrality can reflect different behaviours

e \alidity issues:
o s this generalizable?
o What does the metric mean?

Psychometrics, cognitive science, network science, epistemic network
analysis - offer a range of approaches to validation



Network models matter.
o —0— @O

If network analysis = methodology,
to analyze social learning

Network = graph = construct
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“... Anetwork model should be viewed explicitly as yielding a network representation of
something”

I
~————— 1 abstraction . representation ———— |
' phenomenon |- > | network concept | > | network data |,

network model

Fig. 1. The elements of network models.

Brandes, U., Robins, G., McCranie, A., and Wasserman, S. (2013). What is network science?. Network Science, 1(1),
1-15. doi:10.1017/nws.2013.2
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Suthers, D. (2015). From contingencies to network-level phenomena: Multilevel analysis of activity and actors in heterogeneous
networked learning environments. LAK
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FIG. 1. Model overview of group informatics.

Goggins, S. P, Mascaro, C., & Valetto, G. (2013). Group informatics: A methodological approach and ontology for
sociotechnical group research. Journal of the American Society for Information Science and Technology, 64(3), 516-539.
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Learner heterogeneity
® Demographics
® Activity intensity
® Timing and spacing

A4
Pedagogical practices St:)CIallds_/tna/Imlcs
ivi ideli ® Popularity
® Activity guidelines L . )
® Instructor presence »| Social interaction |<4— Preferential
® Deadlines attachment

® Reciprocity

T

Technological features
® Sorting algorithms
® Display of discussion
structures
® Social cues

Chen, B., & Poquet, O. (2020). Socio-temporal dynamics in peer interaction events. Proceedings of the Tenth International
Conference on Learning Analytics & Knowledge, 203-208. https://doi.org/10.1145/3375462.3375535
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Post 1, Learner A

Post 3, Learner D

==

a) Posting network

Post 3, Learner A

: = O Network models matter

—_—

b)Communication network

Learner A

¢) Social network

Poquet, O., Trenholm, S., Santolini, M. (n.d.). Multi-level Approach to Online Forum Evaluation: From Posts to Communication
Patterns to Learner Networks.



Network evaluation is subjective & multi-dimensional.

o — 0 —0 —@




Network evaluation is subjective & multi-dimensional.

o — 0 —0 —@

Social learning is multi-level and multi-dimensional

Separating the levels enables differential indicators

Evaluation in LA = Instructor choice of what indicators matter

No one ‘effective’ network = fit for purpose
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Color Key

-10 -5 0 5 10
Value

Communities

Density

Gini_Degree

Assortativity

Transitivity

Weight

Evaluating communication
structure

Q1 Communities, inequality
Q2 No communities, equality

Q3 High dyadic exchange, pockets
of exchanges

Q4 High centralization

Poquet, O., Trenholm, S., Santolini, M. (n.d.). Multi-level Approach to Online Forum Evaluation: From Posts to Communication Patterns to Learner Networks.
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Evaluating communication structure

Forum K
‘Share your opinion on X'

> 2-nt_isolates

Forums with High Activity (y-axis: dim 2, 25.7%)

Forum P
‘No special forum provisions’

Poquet, O., Trenholm, S., Santolini, M. (n.d.). Multi-level Approach to Online Forum Evaluation: From Posts to Communication Patterns to Learner Networks.
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@ Evaluation is multi-dimensional

Forum D
‘Constrained small groups
weekly assessed’

Forum M
‘Post a response or build on
the opinion of X people’
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Evaluating communication structure
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Evaluating communication structure
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Evaluating communication structure
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Networks are much more than social networks

Not all centralities measures are made equal

Network models matter

Network evaluation is subjective and multi-dimensional



How network analysis can be
used to support teaching and
learning?



Applying Network Analytics in Teaching

e Learning as a networked phenomenon.
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Applying Network Analytics in Teaching

e Socio-technical systems facilitate networked learning.
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A2: The special educators at my school have been working so hard to meet
and speak with their caseloads on a daily basis. They make sure the students
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2 3
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See https://bookdown.org/chen/snaEd/

SOCIAL
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Chen, B. (2019). Designing for Networked Collaborative Discourse: An UnLMS Approach.
TechTrends, 63(2), 194—201. https://doi.org/10.1007/s11528-018-0284-7
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Example Data 1 dichotomized
How were the data changed from 1,2,3 to 1,0?
To these and this chapter will rely on a fairly simple network data set: Newcomb's A
orm #SNAe
Fraternity Data (referred to as Fraternity Data). The original soci ic data colls d by required each of
the 17 actors (all members of the same fraternity) to rank all the others in terms of friendship preferences, ranging a <

from 1 to 16, with 1 indicating first preference. These rankings were done across the entire semester, resulting in 15
separate 17 x 17 single-mode, directed, and valued matrices. However, to better illustrate these concepts and e——" —
measures, these data have been transformed to keep things a little simpler. In addition, the focus will be on one of
This was done simply for purposes of presentation; any

these networks at a single point in time (week 0, the beginning of the study). These recoded data have been manialation of nstwork dita should have some theorsticsi or

dichotomized, with friendship rankings ranging from 1 to 3, now coded as 1, 0 otherwise. Therefore, using the empirical basis.
terminology introduced in Chapter 4, the recoded data set is now directed and binary ( S0 s plposes of presentation” vaild basks for dua manipula:
This was done simply for of p ion; any i ion of network data should have some theoretical or tion? | am left yearning for more explanation.
empirical basis. Table 5.1 shows the recoded data file in the node-list format, with each row starting with the ID 3 ¥SNAED | #question
number of the responding student followed by three other ID numbers, the alters
Hide replies (3) « <
Table 5.1 Transformed Fraternity Data in Node-List Format. These binary and directed data consist of 17 students, . 2
numbered 1 through 17 (column 1). The next three columns are the ID numbers of the alters who have “received” a tell me more about your question!
tie. For example, Student 2 has sent a tie to Students 4, 7, and 16. SNAEd
A B
1 1 13 17 . Feb 20
2 4 7 16 = .
3 1 12 17 | gathered that the author made the decision to code friend-
ship rankings 1-3 as 1 and all others as 0. The author says
4 2 7 17 this was done for purposes of presentation. This seems like
5 11 12 17 a thin explanation to me. |'d be curious in hearing why only
6 4 8 13 the top three friendship edges are considered. Is there a
7 o 12 17 theoretical basis for only the top three? If not, is the authors
8 6 10 1" arbitrary decision to code the top three rankings for purpos-
es of presentation valid? Perhaps for the purposes of this
9 1 12 17 example the author isn't rigorously laying a theoretical foun- - .
10 1 17 15 dation, which may make the chapter easier to read. | was n n 0 a I o n S 0 re a I n S
1 9 12 17 just wondering. Thanks Bodong! -
12 3 1 17 #SNAED . "
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14 7 9 10 a < .
31 - - Feb 20
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Synchronous collaborative activities on FROG (by Stian Haklev)

Chen, B., Shui, H., & Haklev, S. (2020). Designing orchestration support for collaboration and knowledge flows in a knowledge
community. To appear in the Proceedings of the 14th International Conference of the Learning Sciences (ICLS).
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FROG activity 1

Text area O)‘ :>
************ Gallery Oj*

15 min.

dbmmmt.... on "Tools for Educational Data ..." Tue Oct 1

databas

This is awesome. | would love having all of this from one tool in a
single analysis, especially the text responses.

Click to hide replies...

Yes!!! | wonder if this might be useful in text/discourse analysis.

Same” tagging this for the discourse SIG.

. o ‘Tools for Educational Data ..."

If I'm understanding the meaning of this correctly, then this could
be very useful for the type of data | work with. It would be
important to validate that a trend existed across multiple students
and assessments before drawing any general conclusions.

LOGOUT

Text area (group/2)

What were the most important ideas in web
annotations?

Please spend some time to process annotations initiated by members of the group. Jot
down notes about the following: 1. Any general ideas about using learning theory in
learning analytics; 2. For Reading #2 (about SRL in MOOCs), identify: a) one area that
the study did well in applying SRL ("Praise"), b) one area of theory use the study could
be improved ("Push").

1. Annotations imported via Hypothesis APls
2. Group note-taking in Zoom breakout rooms
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Applying Network Analytics in Teaching

e Learning as a networked phenomenon.
e Socio-technical systems facilitate networked learning.

e Network analytics apps empower reflection and
action-taking.
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SNAPP (Bakharia & Dawson, 2011)


https://confluence.sakaiproject.org/pages/viewpage.action?pageId=84902193
http://www.youtube.com/watch?v=Yut0ZnorEYE

Some ethical questions come up as Euthanasia start engaging in more and more
human life. | cannot anticipate what opinions Budinger will discuss in Chapter 7, but
it is a fact that this issue is very complex and unwieldy.

€ Reply yffg (4 likes)

= o .

< 24 Sep 2015

We deal with same topic even thoug
for your information, in Korea, euthan:
there are countless people who rejectf
are only four states which are accept
Washington, and Vermont).

4 Reply yfg (1 likes)

- - w—
=

Interesting.

If we were to get into the second of tt|
think about the following?

= Unassisted Euthanasia (Suicide):
life, without a doctor?

= Friend-assisted Euthanasia: what|
member to do it? Does that impa

= Postponed-Permit Euthanasia: wi
complete an array of tests (for ch
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This app helps you see the big picture of our class
discussion on Canvas.
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Chen, B., Chang, Y.-H., Ouyang, F., & Zhou, W. (2018). Fostering student engagement in online discussion through social learning

analytics. The Internet and Higher Education, 37, 21-30. https://doi.org/10.1016/j.iheduc.2017.12.002
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Gruzd, A., Paulin, D., & Haythornthwaite, C. (2016). Analyzing Social Media And Learning Through Content And Social Network Analysis: A
Faceted Methodological Approach. Journal of Learning Analytics, 3(3), 46—71. https://doi.org/10.18608/jla.2016.33.4
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Socio-semantic networks based on KBDeX
(Oshima, Oshima, & Matsuzawa, 2012)

Student notes

Vuw
(...11d | Name | Text

65 12 my theory]: the water down here goes up like a magnet |
... 66 12... |[my theoryj:when the rain drops down it sometimes drops in the water which fills the ocean and
.. 67 12... {[mytheory):there must be a crack in your window that makes the air inside the house. and then
.. 68 12.. imy theory):the water goes down. f the water went up there would be no water on earth. and
. 69 12.. llmy theory)water goes down into the earth, then it goes into liguid. then it goes into gas. then it &,
v 70 12... (lmy theory]: and it drops down and comes back as water | )
.. 71 12... Ilineed to understand): how water turns into gas }

. 72 12... [lmy theory}: think the sun turns the water into steam |

... 73 12... |[my theory}:when the cloud are too heavy it comes down as rain and hail. }

... 74 12... ([mytheory}: think that the water freeze outside when it is cold and when we bring it in it tums.
.. 75 12... llmytheoryl:i think that the water goes under the window and it travels invisible. }

.. 76 12... l[my theory):gravity pushes the water down the drain and into the sewer that takes the water lake
.. Almy :h'eorvl. the cloud pick it up} - — )
1| my theorv]: the water nurns info sieas and when the window is onenina it aoes out faster when ¥ fruchterman-Reing... (w|Set - <-> + -
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Ma, L., Matsuzawa, Y., Chen, B., & Scardamalia, M. (2016). Community knowledge, collective responsibility: The emergence of
rotating leadership in three knowledge building communities. In The International Conference of the Learning Sciences (ICLS) 2016,
Volume 1 (Vol. 1, pp. 615-622). Singapore.



Knowledge building in grade 1

Ma, L., Matsuzawa, Y., Chen, B., & Scardamalia, M. (2016). Community knowledge, collective responsibility: The emergence of
rotating leadership in three knowledge building communities. In The International Conference of the Learning Sciences (ICLS) 2016,
Volume 1 (Vol. 1, pp. 615-622). Singapore.
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Word of caution: implicit biases and value tensions

Chen, B., & Zhu, H. (2019). Towards Value-Sensitive Learning Analytics Design. Proceedings of the 9th International
Conference on Learning Analytics & Knowledge, 343-352. https://doi.org/10.1145/3303772.3303798



https://doi.org/10.1145/3303772.3303798
https://bl.ocks.org/d3noob/5141278

Conclusions and take-aways

Networks in digital learner traces - method and methodology
Generalisability and interpretability are critical
Multi- models reflect complexity

Distributed tools scaffold and support networked view on learning and teaching
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