This Talk

• How to conceptualize AI in relation to human learning?

• Theoretical Framing

• Empirical underlayers
  - Measurement of SRL
  - Support of SRL

• Toward Hybrid Human-AI Regulation
WHY: Onload Regulation

1. Deep Learning
2. Future learning
Concept: Hybrid Human-AI Regulation
Hybrid Human-AI Regulation: Transfer of Control
The overall objective is to design, develop and evaluate Hybrid Human-AI Regulation (HHAIR) to support young learners’ deep and future learning in the context of ALTs.
Context: Adaptive Learning Technologies
Theoretical Framing

SRL

LA

AI
Theoretical Framing: Self-Regulated Learning

Cognition

Motivation

Emotion

Metacognition

SRL

(Greene & Azevedo, 2010)
Theoretical Framing: The COPES Model

(Winne & Hadwin, 1998; Panadero et al. 2018)
Theoretical Framing: Learning Analytics

- *extracted analytics*, in the form of learner dashboards to explain to learners how to regulate their learning;

- *embedded analytics*, in the form of advanced algorithms to detect learners’ SRL and perform AI-regulation.

- Agency over regulation is gradually transferred from AI to learners, who increasingly becomes more responsible for and active in his/her own regulation.
Challenges

1. Measurement: Identify individual learner’s SRL during learning

2. Support: Design Hybrid Human-AI Regulation

3. Evaluate effectiveness
   a) optimizing deep learning
   b) for future learning
Traditional measurement SRL

Self-report

Think-aloud
Multimodal Measurements of SRL

- Logs
- Physiological data
- Video
- Voice
- Keyboard & mouse
- Eye tracking
Measurement of SRL in the context of ALTs

Logs

Knowledge model

Adaptive Learning Lab (ALL)
Empirical work on Measurement
Moment-by-Moment Learning Curves

- Moment-by-moment learning curves show the probability ($P(J)$) a student learned at each practice opportunity for a specific skill (Baker et al. 2013)
- Indicates gradual vs. sudden learning: spikes show shifts in performance
- Research indicated that spikiness of ($P(J)$) is associated with learning (Baker & Goldstein, 2010; 2011)
- 7 Visual patterns were found which were related to different learning outcomes (Baker et al. 2013)
  - immediate peak curves were correlated with retention
  - immediate drop curves were associated with post-test scores
Method

Sample:
- 95 students in grade 5, 4 classes in 4 schools
- 51 boys and 44 girls, average aged 10.88
- 265 curves were used in the analysis
  - curves with less than 15 problem solving attempts were not included
# Measurements

<table>
<thead>
<tr>
<th>Learning measures</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior knowledge</td>
<td>Pre-test, 8 items per subskill</td>
</tr>
<tr>
<td>Post Knowledge</td>
<td>Post-test, 8 items subskill</td>
</tr>
<tr>
<td>Gain</td>
<td>Post-test - pre-test per subskill</td>
</tr>
<tr>
<td>Transfer</td>
<td>15 items test</td>
</tr>
<tr>
<td>Process measures</td>
<td>Log file data</td>
</tr>
<tr>
<td>Effort</td>
<td>Number of unique problems completed per subskill</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Correct unique problems / total unique problems completed</td>
</tr>
</tbody>
</table>
Moments-by-Moments Learning Curves

66 Immediate Drop 25%

118 Immediate Peak 45%

35 Close multiple spikes 13%

46 Separate multiple spikes 17%
Associations with Accuracy

- Immediate drop
- Immediate peak
- Close multiple spikes
- Separate multiple spikes

Accuracy problems and accuracy attempts with associated significance levels (*).
Associations with learning

- Immediate drop
- Immediate peak
- Close multiple spikes
- Separate multiple spikes

Score:
- Pre-test
- Post-test
- Gain
- Transfer

Grafiekgebied

Radboud University
## MbML in light of SRL

<table>
<thead>
<tr>
<th></th>
<th>Student learning</th>
<th>Student regulation</th>
<th>Human-AI regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate drop</td>
<td>Low gain, high transfer</td>
<td>High accuracy</td>
<td>Inefficient learning &amp; regulation</td>
</tr>
<tr>
<td>Immediate peak</td>
<td>High gain and transfer</td>
<td>Relatively high accuracy</td>
<td>Efficient learning &amp; regulation</td>
</tr>
<tr>
<td>Close separate spikes</td>
<td>Moderate gain and relatively high transfer</td>
<td>Reduced accuracy</td>
<td>Moderate learning &amp; challenges in regulation</td>
</tr>
<tr>
<td>Multiple separate spikes</td>
<td>Moderate gain and low transfer</td>
<td>Strongly reduced accuracy</td>
<td>Reduced learning &amp; ineffective regulation</td>
</tr>
</tbody>
</table>

MbMLC & phases in the classroom
MbMLC and peaks in learning phases

- separate multiple spike
- close multiple spike
- double spike
- immediate peak
- immediate drop

Legend:
- pre-test
- guided-practice
- non-adaptive practice
- adaptive practice
- repeated adaptive practice
- post-test
### Need for SRL support

<table>
<thead>
<tr>
<th>Groups</th>
<th>MbMLC curves</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SRL group</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Immediate drop</td>
<td>• Reduce teacher and system regulation</td>
</tr>
<tr>
<td></td>
<td>Immediate peak</td>
<td>• Students may benefit from learner-dashboards</td>
</tr>
<tr>
<td><strong>Teacher regulation group</strong></td>
<td>Immediate peak</td>
<td>• Continue teacher regulation</td>
</tr>
<tr>
<td></td>
<td>Double Spikes</td>
<td>• Students may benefit from learner-dashboards to improve SRL</td>
</tr>
<tr>
<td></td>
<td>Close multiple spikes</td>
<td></td>
</tr>
<tr>
<td><strong>System regulation group</strong></td>
<td>Close multiple spikes</td>
<td>• Continue teacher and system regulation</td>
</tr>
<tr>
<td><strong>Advanced system regulation group</strong></td>
<td>Separate multiple spikes</td>
<td>• Advanced system support</td>
</tr>
</tbody>
</table>

Support: Personalized Dashboards
Designing theory grounded support

<table>
<thead>
<tr>
<th>Degrees</th>
<th>AI</th>
<th>Human</th>
<th>Function Dashboard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Regulation</td>
<td>Observes regulation</td>
<td>self-initiation of control</td>
<td>Mirror regulation</td>
</tr>
<tr>
<td>Shared-Regulation</td>
<td>Monitors &amp; proposes control</td>
<td>Understands enactment of control</td>
<td>Scaffold enactment of control</td>
</tr>
<tr>
<td>Co-Regulation</td>
<td>Monitors &amp; Controls</td>
<td>Understands how AI monitors</td>
<td>Model AI monitoring and control</td>
</tr>
<tr>
<td>AI Regulation</td>
<td>Monitors &amp; Controls</td>
<td>Aware of AI regulation</td>
<td>Raise awareness</td>
</tr>
</tbody>
</table>
The design of the Learning Path App

Winne & Hadwin, 1998;2013)
Task Definition Phase: Overview Screen
Goal Setting Phase: Goal Setting Screen

Calculate capacity using the formula: ‘capacity = length x width x height’

Ultimate goal:
- 0% to 50% completed
- 50% to 100% goal

Goal after the first lesson:
- 0% to 50% completed
- 50% to 100% goal

Goal after the repetition lesson:
- 0% to 50% completed
- 50% to 100% goal
Enactment Phase: Overview Screen
Adaptation Phase: Learning Path Screen

(Molenaar, Horvers & Baker, 2020)
Posters

Leerpaden app

**Eerste les**

**Overzichtsscherm**
- De nummers in de doffijn zijn de leenbeukjes.
- Keur van de doffijn.
- Grijp je hebt nog geen doel gesteld.

→ Klik op de doffijn om je doel te stellen.

**Doel zetten scherm**

Stel je doelen:
- *Enkel* doe je voor denk je dat je kunt komen op dit leenbeukje?
- *Pirat* hoe ver denk je dat je kunt komen na de Pirat?

Keer van de vliegenpils:
- Grijp je hebt nog geen doel gesteld.
- Klik je hebt een doel gesteld, maar het nog niet behaald.

---

**Verder werken met Leerpaden app**

**Overzichtsscherm**

Er staat van de doffijn:
- Klein, je hebt nog weinig groefend op dit leenbeukje.
- Grof, je hebt al veel groefend op dit leenbeukje.

Plak je de doffijn:
- Rechts je moet nog meer zelfwenn op dit leenbeukje.
- Links, je bent groefend op dit leenbeukje.

Keer van de doffijn:
- Groen, je hebt je doel behaald.
- Oranje, je hebt je doel nog niet behaald.
- Grijp je hebt nog geen doel gesteld → klik op de doffijn om een doel te stellen.

→ Hoog, je hebt je doel voor na de Pirat behaald. Bel je hebt je doel voor na de Pirat behaald.

---

**Leerpaden app**

**Hoog zwemmer**
- Je kan het leerdoel al.
- Je werkt nauwkeurig, heel goed!
  - Kies een ander leerdoel om meer te oefenen.

**Snelle stijger**
- Je hebt snel gekeerd.
- Je werkt nauwkeurig, heel goed!
  - Kies een ander leerdoel om meer te oefenen.
  - Is je doelvijf groen?
    - Kies een ander leerdoel om meer te oefenen.
  - Is je doelvijf oranje?
    - Ga verder tot de doelfijn groen wordt.

**Langzame stijger**
- Je hebt geleerd na de opleiding van je pui of meester.
  - Zorg dat je nauwkeurig werkt!
  - Is je doelfijn groen?
    - Kies een ander leerdoel om meer te oefenen.
  - Is je doelfijn oranje?
    - Ga verder tot de doelfijn groen wordt.

**Laag zwemmer**
- Je bent langzaam aan het leren.
  - Stel vragen aan je pui of meester als je het niet weet.
  - Zorg dat je nauwkeurig werkt.

**Stijger en daler**
- Je bent langzaam aan het leren.
  - Stel vragen aan je pui of meester als je het niet weet.
  - Zorg dat je nauwkeurig werkt.
  - Ga verder tot de doelfijn groen wordt.

→ Probeer een andere stijger te worden!
Empirical work on Support
Design
Sample:
- 92 students in grade 5, 5 classes in 4 schools
- Experimental condition n=60 and control condition n=32
- Learners average ages 10.15 between 10 and 12 years old
- 38 boys and 54 girls
## Measurements

<table>
<thead>
<tr>
<th>Learning measures</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior knowledge</td>
<td>Pre-test, 8 items per subskill</td>
</tr>
<tr>
<td>Post Knowledge</td>
<td>Post-test, 8 items subskill</td>
</tr>
<tr>
<td>Gain</td>
<td>Post-test - pre-test per subskill</td>
</tr>
<tr>
<td>Transfer</td>
<td>15 items test</td>
</tr>
<tr>
<td>Process measures</td>
<td>Log file data</td>
</tr>
<tr>
<td>Effort</td>
<td>Number of unique problems completed per subskill</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Correct unique problems / total unique problems completed</td>
</tr>
</tbody>
</table>
Effects of Regulation of Practice Behavior

• Significant effect on accuracy $F(2, 85) = 4.88, \ p < 0.01$
• No effect of effort, $F(2, 85)= 1.62, \ p > 0.05$
• Improved practice behavior for skill 2 and 3
Effects on learning outcomes

Significant effect on transfer $t(85, 2) = 2.33, p < 0.05$
Effects on Monitoring Accuracy

![Bar chart showing the percentage of students overestimating, calibrating, and underestimating for different subskills between PV and control groups.](chart.png)
Towards Hybrid Human-AI Regulation
### Designing theory grounded support

<table>
<thead>
<tr>
<th>Degrees</th>
<th>AI</th>
<th>Human</th>
<th>Function Dashboard</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Self-Regulation</strong></td>
<td>Observes regulation</td>
<td>self-initiation of control</td>
<td>Mirror regulation</td>
</tr>
<tr>
<td><strong>Shared-Regulation</strong></td>
<td>Monitors &amp; proposes control</td>
<td>Understands enactment of control</td>
<td>Scaffold enactment of control</td>
</tr>
<tr>
<td><strong>Co-Regulation</strong></td>
<td>Monitors &amp; Controls</td>
<td>Understands how AI monitors</td>
<td>Model AI monitoring and control</td>
</tr>
<tr>
<td><strong>AI Regulation</strong></td>
<td>Monitors &amp; Controls</td>
<td>Aware of AI regulation</td>
<td>Raise awareness</td>
</tr>
</tbody>
</table>
Hybrid Human-AI Regulation

Task conditions: Cognitive conditions

Internal

Phase 1
Definition of Tasks

Phase 2
Goals & Plan(s)

Phase 3
Tactics & Strategies

Phase 4
Adaptations

Standards

Products

Products - Standards

Cognitive Evaluations

Small-scale adaptations

Large-scale adaptations

MONITORING

CONTROL

External

Self-regulation

To be developed

Shared regulation

To be developed

To be developed

To be developed

To be developed

Co-regulation

AI regulation

To be developed

To be developed

To be developed

To be developed

External Evaluations

Behavioural Science Institute
Adaptive Learning Lab (ALL)
Radboud University
Hybrid Human-AI Regulation: Transfer of Control
Would you like to read more?

| --- |
Want to work with us?

- We are looking for
  - A Post-Doc with a strong AI background
  - A Post-Doc combining educational insights with LA and AI

- This Spring:
  - PhD for designing teacher Dashboards
  - PhD for measuring and supporting SRL in Secondary Education
Thank you for your attention

Inge.Molenaar@ru.nl