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LAK23 Program Chairs’ Welcome

We are very pleased to welcome you to the Thirteenth International Conference on Learning Analytics and
Knowledge (LAK23), organized by the Society for Learning Analytics Research (SoLAR). With the aim of
widening participation of the Learning Analytics (LA) community, this year’s conference is held in a hybrid
format (face to face and online) between March 13th and 15th.

The theme for the 13th annual LAK conference is “Toward Trustworthy Learning Analytics.” This theme creates
the opportunity to discuss several social and educational concerns that emerge from the design and
implementation of LA solutions, such as privacy, fairness, and the development of learner autonomy. It invites
researchers and practitioners to fully examine unintended consequences of using educational data and
algorithms, including potential misuse and mis-interpretation; influence on society and education systems;
ethics; privacy; transparency; and accountability. The theme also offers the opportunity for reflection on how
the field can move towards a responsible education system that is established on a foundation of trust,
reinforcing the use of algorithmic transparency to inform end users on how to interpret and enact LA
information and recommendations.

Two excellent keynotes will address this theme across the complementary lenses of education, human-
centered design, and data science. Yvonne Rogers is a Professor of Interaction Design, Director of University
College London Interaction Centre (UCLIC) and Deputy Head of the Computer Science Department at UCL.
Yvonne’s keynote will address the theme of interactive technologies that can enhance life by augmenting and
extending everyday, learning and work activities. Ken Koedinger is a Professor of Human Computer Interaction
and Psychology and Director of LearnLab at Carnegie Mellon University. Ken’s keynote will focus on the role
of Learning Analytics in promoting Equitable Learning. A debate will also be held for the first time at the LAK
conference. The debate will address the role of predictive learning analytics in addressing bias and inequity.
The debate will involve a range of engaging and experienced members of our community to raise and challenge
current views.

This year, we received a large number of high-quality submissions this year across the Practitioner Track, Posters
and Demonstrations, Workshops and Tutorials and to the Doctoral Consortium. After undergoing a rigorous selection
process, we were pleased to accept 16 Practitioner Track Papers, 36 Posters, 6 Demos, 25 Workshops (17 to be
imparted in-person, 6 Online, 2 offering both online and in-person attendance), and 13 participants to the Doctoral
Consortium, each of which is represented in this Companion Proceedings. We are most grateful for all the hard
work by the program committee of each one of the tracks, and their insightful and constructive comments and
reviews. These proceedings could not have been possible without their generous help and support.

We would also like to emphasize our ongoing gratitude for the efforts made by all involved in our community.
The past few years have been difficult due to the ongoing impact of COVID. We very much understand the
complexity of work and life pressures impacting on our time commitments, and priorities. The high level of
support and commitment shown by our colleagues to ensure that the presented and published papers have
received high quality reviews and feedback is highly valued and appreciated. These are difficult times for us all
and we want to thank you for the important efforts you have devoted that have allowed this conference to
continue as a premier scientific event fostering the scholarly exchange of ideas of the highest caliber.

We hope that LAK23 participants and other readers of these proceedings will find value in the many varied
contributions to the field of LA contained within. Although there is still much to be done to understand human
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behavior and social values within educational settings, we believe that this conference reinforces a culture that
honors the diversity of learners and their need for fair and explainable data-based interventions. We invite
both researchers and practitioners to continue a proactive dialogue beyond this conference, reflecting on how
LA identifies and breaks down systemic barriers for inclusion by building trust among different educational
stakeholders.

Isabel Hilliger Hassan Khosravi Bart Rienties Shane Dawson
Pontificia Universidad Catélica de University of Queensland, Open University, University of South
Chile, Chile Australia United Kingdom Australia, Australia
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Selecting Distractors for Automatically Generated MCQs

Sean Shiverick?, Clarence Dillon?, Steve Hookway?
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ABSTRACT: Selecting distractors at an appropriate level of difficulty is necessary for effective
automated item generation (AIG). Measuring the similarity of key and distractors is the
prevailing method for controlling the difficulty of MCQs (Kurdi et al., 2019). Representing the
text of the training manual as a graph helped to identify suitable distractors by their
connections to the item key. This study examined three approaches for approximating key-
distractor similarity: class-based, text-based, and graph-based. Distractors in the same section
of the document as the key were scored as more closely related to key than distractors in
sections far from key. Conceptual structure in the source document used to generate the items
provided information for mapping ontological relations between keywords and concepts.

Keywords: Assessment, Difficulty Metrics, Distractor Selection, MCQs

1 BACKGROUND

Technologies for automated item generation (AIG) require methods for selecting suitable distractors
at an appropriate level of difficulty. The prevailing method for controlling MCQ difficulty is based on
measuring the similarity between an item key and distractors using different measures of similarity
(Kurdi et al., 2019; Liang, et al. 2018). Distractors that are semantically similar to the key are more
difficult to differentiate from the key, thus increasing item difficulty. The relationships between
entities and concepts can be represented as a hierarchy of classes at different levels of abstraction,
with general concepts represented in higher-level categories extending to more specific concepts at
lower levels (Stasaski & Hearst, 2017). The current study considered stems and distractors generated
from semantic relationships (e.g., Tool-Purpose) identified in a field radio training manual. Table 1
shows a subset of chapter sections and entities that describe the functional organization of the radio
components and operation. The source document structure revealed conceptual classes and subclass
relations to estimate similarity without an ontology. A basic strategy for distractor selection is to
choose responses from the same class or subclass as the key (e.g., siblings, cousins). Representing key-
distractor relations as a graph helped identify suitable distractors by their connections to the key.

Table 1: Example User Manual Chapter Sections and Entities for Class-Based Distractor Selection

Chapter 2: Operating Instructions

2.1 Controls, Indicators, Connectors 2.2 Operating Procedures
2.1.1 Controls 2.1.2 Connectors 2.2.3 Programming Menu
2.1.11 2.1.3.2 2.23.1 2.2.3.2
Keypad Audio Key Fill Key Fill Zeroize
Connector
2111 2.1.11 2.1.3.2 2.23.1.2 2.23.15 22317 22319 223112 2232
Control Auxiliary Audio Key Fill  Storage Frequency Time of Word of Day Remote Firmware
Key Control Connector Key Hopset Day Screen Fill
key

Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)
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2 GRAPH REPRESENTATION OF DISTRACTORS
2.1 Implementation

Prominent keywords or ‘n—grams’ (i.e., sequence of n words) in the user manual were identified using
the rapid automated keyword extraction (RAKE) algorithm (Rose et al., 2010). The document produced
3,845 keywords: 131 were identified as parts of the Tool-Purpose semantic relationship; 38 keywords
were Tools. Connections between keywords in the text were graphed in Neo4J. Figure 1 presents part
of the graph arranged as a dendrogram. The grey node at the top represents the source document;
the orange nodes represent chapters 1 and 2. Green nodes represent chapter sections, subsections,
and sub-subsections, etc. (labeled). The grey, orange, and green nodes, together, represent the
structure of the information contained in the source document. Blue nodes represent sentences
contained under a subsection (numbered). Yellow nodes represent response options contained within
the sentence. Subsection headings provided class and subclass relations among keywords in the text.

Figure 1: Dendrogram Depicting Structure Between Response Options (Key Highlighted in Red)

2.2 Findings

Distance between nodes in the graph provided a measure of conceptual relatedness among keywords.
The example in Figure 1 shows an item key (circled in red) and six other Tools as distractor candidates.
By “walking the graph” and counting subsection nodes, the ontological distance (i.e., similarity)
between the key and potential distractors to be selected for an item was estimated by the distance
between structural nodes in the graph. For example, the two distractors (yellow nodes) immediately
left of the key are both three structural nodes away from the key. The third distractor lowest in the
dendrogram is four structural nodes from the key. The other three distractors (right to left) are four,
eight, and nine nodes away from the key. Keywords with the fewest hops between them based on the
subsections (i.e., shortest distance) were more similar than keywords with more hops between them.
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3 DISTRACTOR METRICS AND RATINGS
3.1 Implementation

This study tested three metrics for approximating key-distractor similarity: (1) Class relations based
on chapter sections in the user manual, (2) Sentence distance between the key and each distractor,
and (3) Difference in relative importance scores measured using the RAKE algorithm (Rose et al.,
2010). Distractors were selected for 16 MCQs automatically generated from the user manual. The
stems each stated a Purpose and the keys all described a Tool that achieved the purpose. Distractors
were selected from a set of 39 tools or related concepts based on estimated similarity to the key using
the three metrics. Sentence distance (i.e., number of sentences) and RAKE difference scores were
calculated between all key-distractor pairs and represented in separate matrices. Distance and
difference scores, ranked from smallest to largest, were used to select 5 distractors nearest to the key,
and 5 distractors farthest from the key, for each stem. A subject matter expert (SME) rated 30
distractors for each stem according to, “how closely the distractor is related to key”, on a 3-point scale
(O=unrelated, 2=highly related). Ratings were summed for distractors nearest to the key and
distractors farthest from the key, creating aggregated scores on 10-point scale. It was hypothesized
that distractors nearest to key, as measured by chapter section, sentence distance, or RAKE difference,
would be rated as more closely related to the key than distractors farthest from key. Figure 2 shows
a boxplot of the aggregated scores for the nearest and farthest distractors identified by these metrics.

(e}
[

Distractor Proximity

E Nearest
E Farthest

I
1

N
]

SME Ratings of Closeness to the Key

Chapter Subsection  Sentence Distance RAKE Difference
Metric

o
'

Figure 2: Boxplot of SME Ratings of Distractor Relation to the Key by Distance and Metric
3.2 Findings

A mixed ANOVA conducted on the distractor rating scores yielded a Distance by Metric interaction,
F(2, 60) =3.93, p =.025 (77> = 0.04). The effect of Distance was significant for distractors selected using
the class-based approach (p = .02); as predicted, the SME scored the distractors identified as nearest
to the key by document section as more closely related to the key than distractors farthest from key.
The effect of Distance was marginally significant for distractors selected by sentence distance (p =.06).
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The SME also scored some distractors farthest from the key in text distance as being related to the
key, which was expected because some concepts were described in different sections of the manual.
Third, there was no effect of Distance on ratings for the RAKE difference scores (p =.61), which showed
the SME did not differentiate the key and distractors by the relative importance of keywords.

4 CONCLUSIONS

Automated technologies capable of generating large numbers of stems and response options
necessitate a method for selecting distractors at an appropriate difficulty level. Findings from the
graph representation and distractor ratings indicated that the structure of the source document
provided information about class and subclass relations between keywords in the document that were
used to approximate key-distractor similarity. Representing the text of the user manual as a graph
revealed connections to the key to inform the selection of distractors at varying levels of difficulty.
Distractors from the same document section as the key were more closely related to the key than
distractors in more distant sections. Furthermore, the relations among concepts in the user manual
were somewhat analogous to relationships in a domain ontology. The authors previously reported
that graph representations can be used to estimate characteristics of an ontology (Shiverick, Dillon,
Smith & Harvey, 2021). The estimation of ontological relationships yielded insights about distractors
that were conceptually closer to the key, and therefore more difficult to differentiate from the key
when selected for use in an assessment item. This approach may be useful for developing knowledge
assessments in focused training courses when an existing ontology is not available.

Author’s Disclaimer: This project conducted by ICF was supported by the Army Research Institute for
Social and Behavioral Science (ARI contract W911NF20C0018). The views, opinions, and/or findings
contained in this report are those of the authors and shall not be construed as an official Department of
the Army position, policy, or decision, unless so designated by other documents.
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3 Years of GOAL project in Public School:
Leveraging Learning & Smartwatch Logs for Self-directed Learning
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ABSTRACT: The GOAL project aimed to collect and synchronize learners’ data from physical
activity sensors as well as online learning tools to design data-driven services. We extend the
potential of learning tools interoperability (LTI) protocol to link physical activity and sensor
data from smartwatch platforms. Our primary purpose is to provide this synchronized self-
data to the learners for reflection and promoting self-directed learning habits. The project is
partially supported by multiple national funding and implemented at scale at a combined
public junior high and high school since the summer of 2019. Across the three years more than
1300 users have used the different services built on GOAL. We collected 5,92,599 daily learning
and physical activity logs. Further, 1,72,674 logs of user interaction within the GOAL
application were collected to identify self-directed behaviors. This paper overviews the
research journey of GOAL over the last three years highlighting the implementation challenges
and how they were overcome. As an ongoing project it discusses the potential of anonymous
yet linked multi-attribute learner data and its implication for research and development in the
field of learning analytics.

Keywords: GOAL, Smartwatch, Learning Logs, Self-directed Learning, DAPER model, LEAF

1 BACKGROUND

Collecting and synchronizing multiple attributes of learners remains a challenge in the field of learning
analytics. On the other hand, off-the-shelf wearable technologies such as smart bands and watches
have made automatic logging of users’ physical activities and physiological data more affordable and
easier. However, the datasets from multiple sensors and the learning logs from the e-learning systems
are often collected in separate data silos and limited to use for research purposes only. While earlier
research has discussed the potential of reflection in learning using quantified self-approaches [1,2],
the technology infrastructure for that was still rare. The GOAL project aims to synthesize multi-source
data of learners and create services for learners and teachers as the end-users. The data-driven
services aim to introduce a paradigm of supporting executing self-direction skills (SDS) of analyzing,
planning, monitoring, and reflecting on practice from daily learning lifestyle logs.

This project is partially supported by multiple national funding and will continue till April 2025. First,
we piloted a developed mobile application in a university course in 2018. Based on that, a web version
was developed to be rolled out at scale in the school context in 2019. We collaborated with a public
city school and linked their learning system data to the GOAL infrastructure. Smartwatches were set
up and distributed in the junior high grades in that school, and students could freely use the device.
Currently, all three grades of junior high school and two grades of high school use the GOAL system.
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2 GOAL TECHNOLOGY MODEL

The GOAL technology architecture follows Learning Tools Interoperability (LTI) protocol to link to the
existing learning management system (LMS). The server component synchronizes the data from
multiple systems through APIs. The client can be accessed through a web browser that is also
packaged in iOS and Android apps. The server-client architecture is linked through REST API. The
interactions on the client end are also tracked and stored in the GOAL database. The activity and
interaction data are processed to create GOAL's user model. Figure 1 presents the system architecture
and the landing page interface in GOAL that supports a five-phase process model, DAPER [4].
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Figure 1a: The GOAL system architecture 1b: User interface and activities in GOAL
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3 CHALLENGES & LEARNINGS ACROSS PHASES OF IMPLEMENTATION

Designing daily learning support with multi-source data: For a regular learner at a public school, daily
self-directed learning activities are in different contexts, such as extensive reading practice in English,
solving practice problems for weekly mathematics quizzes, etc. These learning episodes are
distributed in space (within a classroom or outside), time (happening synchronously or
asynchronously with other classmates), and medium (can be tracked online or happens offline).
Planning for holistic support in such a context is challenging due to the lack of integrated data. We
bridge that gap by utilizing tools linked with LTI to collect the online data. For offline data, GOAL
provides forms to collect the data. We found starting with the learning context, where data is
automatically synchronized in the system, and the teachers can guide the activity in a synchronized
classroom setting, helped the junior high school students to get familiar with the DAPER process.
Hence instead of a generic reading activity tracking, setting up specific extensive reading (ER) tasks in
the e-reader as part of an English language course helps to set the context of automatically
synchronizing reading behavior data in GOAL. Recommendation modules such as eBook
recommender for ER being a part of LEAF could be connected to the GOAL client within the ER
dashboard. It provided the students' scope of executing their self-direction skills supported with the
GOAL system in that specific context both within the class and during the vacation period. The
longitudinal study indicated a positive effect on student’s motivation and performance outcomes [3].

Expanding Self-direction skill practices to daily lifestyle: To initiate SDS in the daily lifestyle, we set up
390 smartwatches for the students and synchronized their accounts to the tablet used in their
classroom. At the end of each year, the graduating batch returned the device, and it was made sure
the data and the accounts were deleted from the service providers and freshly set up for the incoming
batch. A step-wise protocol for setting up smartwatch devices and synchronizing the application to
the students’ tablets made the process smoother for the school authorities to prepare for the setup
from the second year, along with the assistance of the GOAL team members. A targeted user manual
in print and video format also helped the students and teachers in onboarding. Further specific
campaigns were introduced where the students participated in executing their self-direction skills in
their daily steps taken and sleep. Introducing activity specific dashboard helped to aggregate the tasks
that the users need to execute in the DAPER flow for a specific activity.

Adaptive scaffolds for SDL skill acquisition: While the basic workflow of the GOAL system is based on
the DAPER model, we built the system in modular form with a scope of augmenting additional data-
driven services. For instance, we added a process recommendation function based on the learner
model created in the system. Figure 2 provides a data flow of the adaptive support strategy used in
the GOAL system. Following a standard protocol such as xAPI to log interaction and synchronize data
within GOAL helped it maintain interoperability with other LEAF components.

1. Computing Activity Status 2. Comparing Status Reports 3. Diagnosing Skill 4. Generating Scaffold
SDS Activity =~ Machine-learningModelling | System Adapiive Scaffold
Data or Criteria-based classifying | Feport
‘~; Degree of
/| separation Score in SDS Phase geedbat"k
DAPER User - enerator
Interactions report
Scoring
Criteria

Figure 2: A model for adaptive scaffolding in GOAL system
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Cooperation of the teachers and co-design efforts: The cooperation of the teachers, the school
management, and the education board was crucial at every implementation step. At the onset, they
had to approve the ethical implementation plan of the project. The school's coordinating teacher
shared the project information with the parents of the students. After being aware of the project’s
scope, the type of data collected, and the functions created with them, the parents had to consent for
their ward to participate in the studies and use the results for academic reporting. It was also essential
to discuss with the teachers the actual students’ context in which they can be supported for self-
directed activities. Over this period, we co-designed activities with teachers for English, mathematics,
and physical education courses at school.

4 USAGE TILL NOW AND THE FUTURE PLANS

Figure 3 presents the accumulated activity logs and the GOAL system's self-direction skill interaction
logs. We can see that most interactions are still in the learning context. While data are collected from
the smartwatch activity context, it is still underutilized by the students. One of the reasons is the
limited school hours during the covid-19 period, which did not allow coordinating physical activity
events for developing self-directed skills. We plan to explore how GOAL can assist teachers in tracking
students' self-directed competency, which is now part of the national educational policy.
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Figure 3: GOAL accumulated logs (from Sep 6, 2019 to Sep 28, 2022)
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ABSTRACT: Nursing faculty complement clinical experiences with simulations to expose
undergraduate students to a variety of clinical situations, facilitate theory-practice integration,
and cultivate a range of competencies. The adoption of immersive virtual reality (VR)
simulations in nursing programs has risen recently. However, little is known about the design of
learning analytics tools in VR systems for nursing education, and how faculty utilize them to
meet their clinical education goals. Thus, in this practitioner-corporate track report, the authors
unpack the design and implementation of the SimX moderator tool-a multimodal interface
used to select and facilitate scenarios—in Simulation Learning System with Virtual Reality (SLS
with VR) using categories for technologies for classroom orchestration (Dillenbourg & Jermann,
2010). Insights from Fall 2020 and 2021 indicate that the moderator tool affords nursing faculty
the agency to prioritize student learning goals, personalize instruction within a certain range,
adjust their scaffolding just-in-time, and maintain the realism of clinical settings.

Keywords: virtual reality, learning analytics tool, nursing education, classroom orchestration,
simulation

1. Introduction and Background

The growing number of nursing schools in the United States and increasing student enrollment has left
many institutions struggling to obtain clinical partnerships. This issue is juxtaposed with a rapid shift in
patient demographics and social determinants of health, digital transformation in healthcare and
education, and reports indicating that new graduates are not being sufficiently prepared for participation
in clinical settings (Kavanagh & Sharpnack, 2021). Over the last two decades, nursing programs have
reliably used simulations to complement clinical experiences. More recently, the adoption of immersive
virtual reality (VR) simulations has gained momentum. Studies are increasingly demonstrating the
positive impact of this high-fidelity modality on nursing students’ cognition and psychomotor skills (Choi
et al., 2022). Furthermore, reports illustrating the technological affordances of VR (e.g., immersion,
cost-effectiveness) have catalyzed acceptance among nursing faculty and students. However, there is a
dearth of reports that unpack the design and implementation of learning analytics tools that faculty use
to facilitate simulation experiences in nursing programs (Fernandez-Nieto et al., 2022). Focusing on this
technological-pedagogical gap is the goal of this practitioner-corporate track paper.

In what follows, we (Wills-Savoia, practitioner author-director of clinical and simulation learning
at University of St. Francis and Shah, corporate author- learning scientist at Elsevier) report findings from



a descriptive case study capturing nursing faculty insights about the moderator tool (developed by SimX)
in Elsevier’s Simulation Learning System with Virtual Reality (SLS with VR). We use Dillenbourg and
Jermann’s (2010) design categories for technologies for classroom orchestration. As a design metaphor,
orchestration provides a lens to understand the effectiveness of learning analytics tools from teachers’
perspectives. Thus, to situate the reader, first we introduce SLS with VR and the anatomy of its
moderator tool. This is followed by a description of SLS with VR implementation at a private nursing
college in mid-western United States. Results are organized by the nursing faculty (practitioner author
and partnering faculty) insights about the moderator tool’s affordance for teacher-centrism, cross-plane
integration, sequentiality, time management and physicality (Dillenbourg & Jermann, 2010). We discuss
findings in the context of extant literature and conclude with implications for future inquiry.

2. SLS with VR

SLS with VR enables nursing schools to provide undergraduate students with immersive clinical
experiences alongside traditional simulation experiences. Faculty have a choice of 100 scenarios and
associated student-facing activities and faculty resources across multiple content areas in nursing. The
moderator tool enables faculty to (a) select scenarios, (b) orient students to the clinical environment and
possible actions in VR; (c) introduce virtual characters, situational distractions, control patient and other
virtual character speech and actions, (d) monitor student participation and patient health, (e) provide
just-in-time support; and (f) obtain an end-of-scenario report of interventions performed by the learners.
Nursing faculty navigate and choose from the following features in the moderator tool while facilitating
scenarios - 1. Orders & actions pane, 2. Dialog tab, 3. Monitor tab, 4. Required actions pane, 5. VR view
pane, 6. State map tab, 7. Description tab, 8. Settings button, 9. Screen recording button. This video
provides a brief demonstration of SLS with VR, including the use of the moderator tool and the instructor
view it affords.

3. Description of Implementation

Two faculty (practitioner author whose expertise is in Pediatrics, and an Obstetrics and Fundamentals
expert) utilized SLS with VR with a group of 50 undergraduate prelicensure nursing students initially
during Fundamentals—their first clinical course (Fall 2020) and then in Obstetrics and Pediatrics (Fall
2021)-their third clinical course. Both implementations were 8 weeks long. Typically, in each simulation
session, two students participated in the patient scenario while two others observed. At the same time,
four students completed pre-simulation activities such as concept maps in the waiting room before it
was their turn to role-play. The second implementation (Obstetrics and Pediatrics) included the same
fifty students, plus two additional students who had no prior experience with VR. Faculty that led SLS
with VR simulations with the first group also led them with the second; this aided in consistency in
pre-briefing, facilitation and debriefing. During both implementations, the corporate author and her
team provided onboarding and technical support, and engaged in remote observations of the SLS with
VR sessions.

4. Results
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In Fall 2020, faculty used one scenario featuring a patient with diabetes and a cellulitis wound. Students
had to assess the wound, engage in empathetic communication and provide education to the patient
and their family, report to the provider, and administer medications. However, at that time, many of the
students had not yet gained practical experience in the clinical setting. This inexperience was reflected in
students’ struggle with performing most tasks in the simulation and completing interventions. Instead,
the participants focused on communicating with the patient and family. In Fall 2021, this same group
used two scenarios. The first was a patient with preeclampsia and the second was a pediatric patient
with sickle cell disease. At this time, the students had spent approximately 150 hours in the clinical
setting. Their growing competence was reflected in their ability to complete their assessments,
determine necessary interventions, implement those interventions and reevaluate their care, while they
communicated with the patient and family. The implementation of SLS with VR in the two clinical courses
helped the nursing faculty complement students’ clinical experiences. The moderator tool provided
them the means to orchestrate scenarios for nurturing students’ practice readiness and observing clinical
judgment improvements during the simulation sessions.

Dillenbourg and Jermann’s (2010) first design category states that technologies designed for
classroom orchestration should be teacher centric. They should grant teachers leadership, flexibility and
control in order to meet their instructional goals. Overall, the moderator tool allowed the nursing faculty
to “drive the bus” and choose specific milestones. Although multiple tabs and panes were available to
provide a real-time view of how a scenario was unfolding, the faculty could decide what they wanted to
prioritize for their students for each simulation session and scenario. The practitioner author and her
colleague noted using the dialog tab frequently to prompt and respond to students through different
characters in the scenario, steer their attention towards specific aspects, and encourage critical thinking
about patient-centered communication, teamwork and collaboration. Using the moderator tool, faculty
maintained a certain level of control; however, as in the real-world, patient outcomes in the virtual world
depended on student interventions.

The second category is cross-plane integration; Dillenbourg and Jermann (2010) suggest that
tools should facilitate students’ engagement in the curricula at multiple levels. The moderator tool
provided an array of functions and multi-modal feedback mechanisms to deepen (individual and dyad)
students’ participation in a scenario. For instance, as students progressed in their program, nursing
faculty prioritized multiple learning goals including peer collaboration, assessing patient condition,
performing interventions, demonstrating cultural sensitivity and adopting safety measures. Sequentiality,
the third design category, is characterized by the extent to which a tool allows teachers to expect a
degree of linearity and continuity, and introduce drama in a learning situation when needed. Across
scenarios and semesters, the moderator tool allowed nursing faculty to guide student participation
through experiences of patient assessment, intervention, and communication. This consistency allowed
them to observe students’ growing competency and knowledge gaps. Introducing characters (e.g. a call
from a provider seeking an assessment report) and situations (e.g., making the virtual parent walk up to
the student role playing nurse and ask them why the child is hurting) provided a way to make a scenario
mimic the characteristics of a dynamic clinical setting.

Time management and physicality are the final design categories; they are self-explanatory.
Nursing faculty believed the moderator tool was most useful in these categories. Simulation sessions
were preceded by lengthy and large group lectures on specific content. SLS with VR scenarios also
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complemented the lectures allowing students to apply theoretical knowledge in short durations and
smaller groups, and allowing faculty to facilitate reflection in and on action during the
preparation/pre-briefing, scenario and debriefing phases. The moderator tool enabled the faculty to
maintain a participant observer-like presence during the simulation; they were able to watch and
scaffold their students' communications and actions in simulated clinical settings and most importantly
get a first person view of what the students were seeing too. Nursing faculty rarely get this perspective in
clinical settings.

5. Discussion and Implications

“Orchestration tools are based on the idea of capturing, analyzing, and visualizing student activities
during class time and feeding them back to teachers to facilitate real time monitoring and support of
students” (van Leeuwen et al., 2018, p. 1227). The moderator tool in Simulation Learning System with
Virtual Reality (SLS with VR) affords these technological and pedagogical functions for nursing educators
interested in using VR simulations to facilitate clinical readiness (Kavanagh & Sharpnack, 2021).
According to Dillenbourg and Jermann (2010), teachers translate the design of orchestration
technologies in the context of their practice (Dillenbourg & Jermann, 2010). In this study, nursing faculty
reported using functions of the moderator tool to prioritize specific clinical competencies and
personalize instruction based on students’ clinical experiences over two semesters (Fall 2020 and Fall
2021).

Future work should continue examining how nursing faculty orchestrate simulation experiences
using learning analytics tools in VR systems in a variety of programs and disciplines. Pursuing this
direction should include identifying best practices and challenges, generating opportunities for design
enhancements, and assessing impact on students’ preparedness for clinical practice. An endeavor of this
nature would be of mutual benefit to practitioners, researchers, and industry.
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ABSTRACT: The format of the presentation is a practitioner’s presentation on the effective use
of a Learning Analytics Dashboard (LAD) by professional academic advisors to support
undergraduate students at a large research-intensive university in South Africa. Academic
advisors provide multifaceted support in the life-cycle of students. This includes support in
both academic and non-academic domains. In the past, these advisors had minimal
information about the students that consulted them. Moreover, the advisors were not in a
position to proactively identify students in need of academic support early in the semester.
Previous LADs provided aggregated risk indicators that were not very useful to identify the
challenges students may face with specific subjects or courses. The new LAD was created using
student activity data from Blackboard Learn as well as their formative assessment results per
month. Students’ demographic data, intervention attendance, and final semester results are
also included. This was done to provide advisors with a profile of students’ engagement and
academic performance over time, as this information is not presented in any of Blackboard
Learn standard reports. The new LAD is an attempt to provide the advisors with the necessary
information to proactively support students academically through various interventions aimed
at assisting students to manage their academic careers.

Keywords: Learning Analytics Dashboards, Student Support, Academic Advisors, Decision Support.

1 BACKGROUND

Learning Analytics in South Africa is an underdeveloped research field and the application of student
data is mainly focused on Academic Analytics for reporting and strategic planning purposes (Lemmens
and Henn, 2013, Prinsloo and Kaliisa, 2022). While there is a large-scale adoption of learning
management systems across the 26 public higher educati