



BILL&MELINDA GATES foundation

# The Impact of Different Personalisation Algorithms on Literacy and Numeracy in Kenyan Pre-primary Education: A Comparative Study of Summative and Formative Assessments Results

Chen Sun<sup>1</sup>, Louis Major<sup>1</sup>, Nariman Moustafa<sup>2</sup>, Rebecca Daltry<sup>3</sup>, Lazar Obradovic<sup>4</sup>, Aidan Friedburg<sup>4</sup>

<sup>1</sup> University of Manchester: chen.sun@manchester.ac.uk; louis.major@manchester.ac.uk 2 Open Development & Education: nariman@edtechhub.org 3 Jigsaw: rebecca@edtechhub.org 4 **EIDU**: lazar.obradovic@eidu.com; aidan.friedberg@eidu.com

## INTRODUCTION

Evidence indicates that digital personalised learning (DPL) can have a positive impact on learning outcomes. An important research area of personalisation is to sequence learning content to actively engage learners (Diwan et al., 2023) and/or increase knowledge acquisition (Major et al., 2021). Research suggests that content sequencing powered by personalisation algorithms can outperform the sequence set by experts (Chau et al., 2018).

This paper contributes to research on DPL in that (1) we implemented and compared two personalisation algorithms (optimising engagement vs. score), evaluated against a default expert-curated sequence to assess learning effectiveness, and (2) the study was conducted in an under-researched context, i.e., a low- and middle-income country (LMIC; Kenya). The impact

of three different content sequencing methods deployed on the EIDU DPL tool are investigated, by comparing the effects on three learning metrics: summative assessment, curriculum progress, and formative assessment.



**Expert-Curated** 



RESULTS

### SUMMATIVE ASSESSMENT

1,661 learners completed the summative assessment in the Engagement partition, 1,702 in the Score partition, and 1,640 in the expert-curated sequence group. Possible score range was 0 to 1 for each assessment unit. Scores were averaged across all test units and aggregated to overall scores for literacy and numeracy.

ANOVA tests did not reveal significant group differences for pre-test literacy learning (F(2,4106) = 2.96, p = .052) and numeracy learning (F(2,1906) = .11, p = .89). Similarly, post-test analysis did not show any group difference in literacy (F(2,4361) = .96, p = .38) and **numeracy** (F(2,2186) = .58, p = .56).

## **CURRICULUM PROGRESS**

No differences were found in total usage between partitions (F(2,6488) = 2.00, p = .13; Table 1).

There were **significant differences** in the **number of unique** learning units completed (F(2,6488) = 1509.58, p < .001; Fig. 3).

**Engagement** partition progressed through most number of learning units (Table 1).

| Table 1. Curriculum Drog | Troccy Usago and | Number of unique | loarning unite   | completed  |
|--------------------------|------------------|------------------|------------------|------------|
| Table 1. Curriculum Frog | Siess. Usage anu | Number of unique | e learning units | completed. |

|                         | Total duration (in minutes) | Average progress (Mean) |
|-------------------------|-----------------------------|-------------------------|
| Engagement              | 96.73                       | 21.6                    |
| Score                   | 99.73                       | 8.2                     |
| Expert-curated sequence | 103.74                      | 18.5                    |



## **FORMATIVE ASSESSMENT**

| Partition              | Eg vs. Expert   | Score vs. Expert | Eg vs. Score    |  |  |  |
|------------------------|-----------------|------------------|-----------------|--|--|--|
|                        | Mean (SE)       | Mean (SE)        | Mean (SE)       |  |  |  |
| Classification         | .033 (.004) *** | .044 (.004) ***  | 011 (.003) **   |  |  |  |
| Listening              | .028 (.007) *** | 068 (.007) ***   | .096 (.006) *** |  |  |  |
| Measurement            | .056 (.008) *** | .042 (.008) ***  | .014 (.009)     |  |  |  |
| Numbers                | 044 (.008) ***  | 162 (.008) ***   | .119 (.009) *** |  |  |  |
| Phonological awareness | 017 (.007)      | 022 (.007) **    | .006 (.007)     |  |  |  |
| Reading                | 013 (.008)      | 117 (.008) ***   | 104 (.007) ***  |  |  |  |
| Speaking               | .043 (.007) *** | 034 (.007) ***   | .076 (.006) *** |  |  |  |
| Writing                | 001 (.001)      | 005 (.001) ***   | .006 (.001) *** |  |  |  |

Table 2: Post hoc Tukey test for group comparisons

Note: \*\* p < .01, \*\*\* p < .001. Eg = Engagement, Score = Score partition, Expert = expert-curated

#### DISCUSSION

contributes This work to а deeper understanding of how low-cost DPL benefits literacy and numeracy learning for pre-primary learners in LMICs. The **findings demonstrate** varied effects of different content sequencing

algorithms on specific learning content. Personalisation had no impact on the summative assessment, but may affect learning pathways (e.g., Engagement partition went through learning units faster) and improve certain content learning.

Future research should focus on investigating and identifying algorithms that are more beneficial for pre-primary learners in LMICs, taking into account the specific subject matter. Further investigation is needed to pinpoint the exact effects of content sequencing algorithms, by comparing different LSTM-based algorithm designs.

In total, 6,371 learners participated across all three partitions: 2,089 Engagement, 2,117 Score, and 2,165 expert-curated. Learners collectively played 216 common learning units across 8 strands.

Different sequencing impacted learning outcomes in different ways depending on the learning strand - Table 2 outlines this variation according to learning strands (e.g., classification, listening, etc.) (In *Table 2*, Eg = Engagement).

#### REFERENCES

Chau, H., Barria-Pineda, J., Brusilovsky, P. (2018). Learning content recommender system for instructors of programming courses. In Penstein Rosé, C., et al. (Eds.) Artificial Intelligence in Education. Lecture Notes in Computer Science, Vol. 10948 (pp. 47–51). Springer.

Diwan, C., Srinivasa, S., Suri, G., Agarwal, S., & Ram, P. (2023). Al-based learning content generation and learning pathway augmentation to increase learner engagement. Computers and Education: Artificial Intelligence, 4, 100110.

Friedberg, A. (2023). Can A/B Testing at Scale Accelerate Learning Outcomes in Low- and Middle-Income Environments?. In Wang, N., et al. (Eds.) Artificial Intelligence in Education. Communications in Computer and Information Science, Vol.1831 (pp. 780-787). Springer.

Major, L., Francis, G. A., & Tsapali, M. (2021). The effectiveness of technology-supported personalised learning in low- and middleincome countries: A meta-analysis. British Journal of Educational *Technology*, 52(5), 1935–1964.